Sistem Pendukung Keputusan Penentuan Status Karyawan Menggunakan Metode Naïve Bayes

Decision Support System for Determining Employee Status Using Naïve Bayes Method

Andri Firmansyah*1, Feri Ramadhani2, Edri Fauzan3

^{1,2,3} *Program Studi Teknik Informatika, Fakultas Teknik, Universitas Pelita Bangsa Bekasi* e-mail: *¹andrifirmansyah@pelitabangsa.ac.id , ²feriramdhani39@gmail.com, ³edri@edri.us

Abstrak

Dalam penelitian ini dirumuskan masalah tentang bagaimana mengimplementasikan metode naïve bayes dalam menentukan keputusan status karyawan, dengan tujuan dapat mempercepat dan mempermudah pengambilan keputusan dalam menentukan status karyawan magang menjadi karyawan kontrak pada PT EMSONIC INODONESIA. Metode naïve bayes menggunakan kriteria-kriteria karyawan sebagai data training, dan menghitung data tersebut untuk medapatkan nilai probabilitasnya sehingga dengan nilai probabilitas tersebut dapat memprediksi hasil keputusan apakah seorang karyawan layak atau tidak diubah statusnya. Dalam membangun sistem pendukung keputusan penentu status karyawan digunakan visual studio 2010, dan juga menggunakan MySql sebagai database untuk menyimpan data-data yang digunakan. Hasil dari sistem pendukung keputusan menggunakan metode naïve bayes terbukti dapat memprediksi dengan tepat kelayakan status karyawan.

Kata kunci—SPK, naïve bayes, status karyawan

Abstract

In this study, the problem was formulated about how to apply the naïve bayes method in determining employee status decisions, with the aim of accelerating and ease decision making in determining from apprenticeship status to contract status employees at PT EMSONIC INODONESIA. The naïve bayes method uses employee criteria as training data, and calculates data to get its probability value so that the probability value can predict the outcome of the decision whether the employee meets the requirements or does not change status. In building a decision support system for determine employee status, visual studio 2010 was used, and also used MySql as a database to store the data used. The results of the decision support system using the naïve bayes method are proven to be able to predict the advisability of employee status.

Keywords—dss, naïve bayes, employee status,

PENDAHULUAN

Perubahan status karyawan magang menjadi karyawan kontrak adalah agenda rutin yang di laksanakan oleh perusahaan, untuk pengembangan karir pegawai magang selama masa perjanjian. Seleksi calon karyawan kontrak di lakukan ketika masa perjanjian magang habis dimana karyawan magang berhak dipromosikan menjadi karyawan kontrak. Kriteria yang digunakan untuk menentukan apakah seorang pegawai layak atau tidak untuk menjadi karyawan kontrak yakni absensi, skill, kepribadian, prestasi, dan lain-lain. Dengan penilaian dari kriteria tersebut, perusahan dapat mempertimbangkan serta memberi keputusan layak atau tidaknya seorang karyawan magang menjadi karyawan kontrak. Namun kriteria-kriteria tersebut tidak memiliki nilai yang baku sehingga sulit menjadi tolak ukur, padahal suatu kriteria dapat menjadi lebih penting dari kriteria yang lain dengan berbagai pertimbangan oleh perusahaan.

Pegawai yang berkualitas tentu saja dapat memberikan hal yang positif bagi perusahaan. Oleh sebab itu perusahaan harus dapat menyeleksi pegawainya dengan baik, agar mendapat orang yang mampu bekerja secara optimal dalam melaksanakan suatu pekerjaan. Dalam proses

Informasi Artikel:

Submitted: Juli 2020, **Accepted:** September 2020, **Published:** November 2020 **ISSN:** 2685-4902 (media online), Website: http://jurnal.umus.ac.id/index.php/intech

seleksi karyawan perusahaan harus benar-benar membuat peraturan yang ketat dengan melihat karakteristik karyawan magangnya. Di PT EMSONIC sering terjadi kesalahan dalam menilai karyawan magang yang akan diubah statusnya menjadi karyawan kontrak, seperti masih kurangnya pengetahuan pekerjaan, banyaknya absen, kepribadian yang tidak baik, kurangnya kesadaran kerja, dan tidak memiliki inovasi. Salah satu metode yang dapat membantu dalam masalah ini adalah dengan menggunakan metode data mining atau metode *algoritma Naïve Bayes*.

Algoritma Naïve Bayes Classifer merupakan salah satu perhitungan probablitias yang dapat menghitung dan memprediksi keanggotaan suatu kelas [1]. Pada kelas klasifikasi, naïve bayes memiliki akurasi yang tinggi melalui perhitungan sederhana yang dilakukannya[2]. Dan hal ini tentu saja menjadi salah satu keunggulan metode Naïve Bayes yang hanya membutuhkan jumlah data pelatihan (data training) yang kecil untuk menentukan estimasi parameter yang di perlukan dalam proses pengklasifikasian. Karena yang diasumsikan sebagai variabel independent, maka hanya varians dari suatu variabel dalam sebuah kelas yang dibutuhkan untuk menentukan klasifikasi, bukan keseluruhan dari matriks kovarians. Oleh sebab itu metode Naïve Bayes digunakan sebagai algoritma pada penelitian ini. Data karyawan yang bekerja akan digunakan sebagai data training untuk memprediksi pengalihan status karyawan kontrak dan mengetes tingkat keberhasilan prediksi tersebut menggunakan data testing terhadap karyawan yang masih berstatus magang.

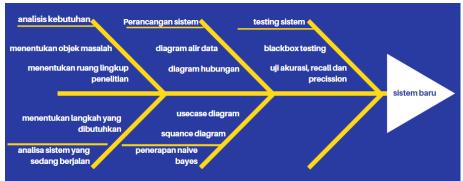
Naïve bayes pernah diterapkan untuk melakukan klasifikasi data pendaftar beasiswa PPA di Universitas AMIKOM Yogyakarta apakah layak mendapatkan beasiswa tersebut ataukah tidak, berdasarkan hasil pengujiannya maka didapatkan bahwa semakin besar prosentase akurasi yang dihasilkan oleh naïve bayes maka semakin banyak pula data yang diperlukan dalam proses pengujiannya[3]. Naïve bayes juga pernah digunakan untuk menentukan besarnya insentif bulanan yang harus diberikan Perusahaan Jasa kepada karyawan sesuai dengan kinerjanya dalam mengantarkan pesanan berdasarkan rekomendasi para *customer* [4]. Dalam bidang akademis, naïve bayes juga pernah digunakan untuk memprediksi penilaian mahasiswa terhadap pelayanan akademis pada Perguruan Tinggi, hasil pengujiannya menunjukkan bahwa nilai akurasi, *precission* dan *recall* yang dihasilkan oleh algoritma ini cukup tinggi yaitu diatas 95% hal ini membuktikan bahwa naïve bayes mampu memprediksi dengan baik [5]. Naïve bayes pun pernah digunakan untuk pendeteksian *malware* melalui diskritisasi variable min max 3 interval dan 5 interval pada atribut kontinu, dimana nilai akurasi yang dihasilkan akan semakin tinggi yaitu 79,7% dengan prediksi *malware* 81,29%[6].

METODE PENELITIAN

Sistematika penelitian

Dalam tahap analisis kebutuhan langkah awal peneliti akan melakukan identifikasi masalah melalui proses perubahan status karyawan magang menjadi karyawan kontrak di PT Emsonic Indonesia yang dilakukan oleh HRD berdasarkan data pada kriteria absensi, kemampuan karyawan (*skill*), penilaian *leader*, dan pelanggaran yang terjadi. Selanjutnya sistem akan menghitung data tersebut berdasarkan naïve bayes. Yang kemudian akan dilakukan uji coba (*testing*) berdasarkan fungsionalitas sistem ataupun akurasi yang dihasilkan oleh sistem melalui prosentase akurasi, *recall* dan *precission*. Adapun gambaran mengenai sistematika rinci mengenai alur penelitian yang dilakukan terlihat pada Gambar 1.

87



Gambar 1. Sistematika

Naïve bayes

Naïve bayes merupakan salah satu metode klasifikasi yang manfaatkan probabilitas sederhana melalui *likehood* maksimum terhadap masing-masing kelasnya [7]. Persamaan dari teorema bayes tersebut adalah[8]:

$$P(H|X) = \frac{P(X|H).P(H)}{P(X)}$$
 rumus (1)

Dimana:

X : data dengan *class* yang belum diketahui

H : hipotesis data yang merupakan suatu *class* spesifik

P(H|X) : probabilitas hipotesis H berdasarkan kondisi X (posteriori probabilitas)

P(H) : probabilitas hipotesis H (*prior probabilitas*)
P(X|H) : Probabilitas X berdasarkan kondisi hipotesis H

P(X): Probabilitas X

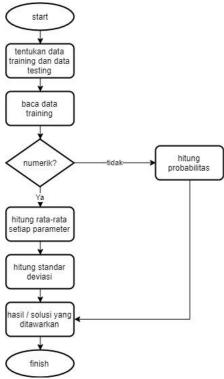
Sedangkan dalam mencari dan menentukan kelas yang cocok untuk *sample* yang digunakan dilakukan dengan menghitung rumus 2

$$P(C|F_1 \dots F_n) = \frac{P(C).P(F_1 \dots F_n|C)}{P(F_1 \dots F_n)}$$
 rumus (2)

Dimana variable C tersebut adalah representasi suatu *class* sedangkan F_1 ... F_n merupakan karakterisktik petunjuk dalam melakukan klasifikasi[8]. Karena C adalah *posterior* peluang munculnya kelas C prior yang akan dikali dengan karakteristik kelas C (*likehood*) dan dibagi dengan *evidence* maka rumus 2 dapat ditulis dengan[9]:

$$posteriror = \frac{prior \ x \ likehood}{evidence}$$
 rumus (3)

Dalam penelitian ini, alur dari naïve yang diterapkan terangkum pada Gambar 2. Pada awal sistem akan memilih antara data *training* dan data *testing* yang digunakan, selanjutnya sistem akan membaca data *training* tersebut, dimana jika data tersebut bersifat numerik maka sistem akan menghitung rata-rata (*mean*) dan standar deviasi untuk setiap parameter yang digunakan namun jika data tersebut bukan bersifat numerik, maka sistem akan menghitungnya secara probabilitas dan menghasilkan *table probabilitas*. Table dari standar deviasi dan *probabilitas* tersebut merupakan solusi / hasil yang ditawarkan melalui naïve bayes.



Gambar 2. Alur penerapan naïve bayes

HASIL DAN PEMBAHASAN

Penelitian ini akan menggunakan 4 variable yaitu absensi, *skill*, penilaian leader, dan pelanggaran. Dari 4 variable tersebut selanjutnya akan dibentuk 3 himpunan menjadi baik, cukup dan kurang. Rincian mengenai jenis variable dan himpunan yang terbentuk terangkum pada Tabel 1.

Table 1. Variable dan himpunan yang terbentuk

	Table 1: Variable dan ininpunan yang terbentuk						
No	Nama variable	Himpunan					
1	Absensi	0 : Baik					
		1-2 : Cukup					
		>3 : Kurang					
2	Skill / kompetensi	>3 : Baik					
		1-2 : Cukup					
		0 : Kurang					
3	Penilaian leader	>90 : Baik					
		80 – 89 : Cukup					
		< 80 : Kurang					
4	Pelanggaran / sanksi	0 : Baik					
		1 : Cukup					
		>1 : Kurang					

Untuk *sample* data *training* peneliti menggunakan 105 data, rangkuman mengenai *sample* data tersebut terangkum pada Tabel 2.

Table 2. Sample data

	Tubic 21 Sumple data						
No	NIK	Yayasan	Absensi	Skill	Penilaian	Pelanggaran	Status
1	MCN016021	CN	Baik	Baik	Baik	Baik	Ok
2	MCN016022	CN	Baik	Cukup	Cukup	Baik	Ok

3	MCN016023	CN	Baik	Baik	Baik	Baik	Ok
4	MCN016024	CN	Baik	Baik	Cukup	Baik	Ok
5	MCN016053	CN	Kurang	Kurang	Kurang	Kurang	Gagal
6	MCN016025	CN	Kurang	Kurang	Kurang	Kurang	Gagal
7	MCN016026	CN	Baik	Baik	Baik	Baik	Ok
8	MCN016027	CN	Baik	Baik	Baik	Baik	Ok
9	MCN016028	CN	Baik	Baik	Baik	Baik	Ok
10	MCN016029	CN	Baik	Cukup	Baik	Baik	Ok
105	MIS017057	Insko	Baik	Cukup	Baik	Baik	Ok

Selanjutnya akan dilakukan perbandingan antara data uji dari data *training*. Table 3 adalah rangkuman mengenai hasil perbandingan data uji yang dilakukan.

Table 3. Data uji perbandingan

Table 3. Data uji perbandingan						
Hitung $P(X_k \mid C_i)$ untuk setiap kelas i						
Absensi	Ok	Gagal	Ok	Gagal	Nilai Ok	Nilai Gagal
Baik	67	7	67 / 83	7 / 22	0,807	0,318
Cukup	16	6	16 / 83	6 / 22	0,193	0,273
Kurang	0	9	0 / 83	9 / 22	0.000	0,409
Skill	Ok	Gagal	Ok	Gagal	Nilai Ok	Nilai Gagal
Baik	55	13	55 / 83	13 / 22	0,663	0,591
Cukup	28	3	28 / 83	3 / 22	0,337	0,136
Kurang	0	6	0 / 83	6 / 83	0,000	0,273
Penilaian	Ok	Gagal	Ok	Gagal	Nilai Ok	Nilai Gagal
Baik	76	11	76 / 83	11 / 22	0,916	0,500
Cukup	7	3	7 / 83	3 / 22	0,084	0,136
Kurang	0	8	0 / 83	8 / 22	0,000	0,364
Pelanggaran	Ok	Gagal	Ok	Gagal	Nilai Ok	Nilai Gagal
Baik	72	9	72 / 83	9 /22	0,867	0,409
Cukup	11	3	11 / 83	3 / 22	0,133	0,136
Kurang	0	10	0 / 83	10 / 22	0,000	0,455

Kemudian akan dihitung perbandingan untuk setiap kelasnya, table 4 merupakan hasil rangkuman mengenai uji perbandingan setiap kelasnya.

Table 4. Data uji perbandingan setiap kelas

Hitung P (Xk Ci) untuk setiap kelas					
P (Absensi = Baik Status Ok)	67 / 83	0,807			
P (Absensi = Baik Status Gagal)	7 / 22	0,318			
P (Skill = Baik Status Ok)	55 / 83	0,663			
P (Skill = Baik Status Gagal)	13 / 22	0,519			
P (Penilaian = Cukup Status Ok)	7 / 83	0,084			
P (Penilaian = Baik Status Gagal)	3 / 22	0,136			
P (Pelanggaran = Baik Status Ok)	72/83	0,867			
P (Pelanggaran = Baik Status Gagal)	9/22	0,407			

Selanjutnya akan dihitung nilai $P(X \mid C_i)$ melalui perkalian hasil seluruh nilai perbandingannya. Hasil perhitungannya terlihat seperti:

- 1. $P(X \mid Status = "Ok") = (0.807 \times 0.663 \times 0.084 \times 0.867) = 0.03915$
- 2. $P(X \mid Status = "Gagal") = (0.318 \times 0.591 \times 0.136 \times 0.409)$ = 0.01049

Setelah mengetahui nilai $P(X \mid Ci)$ maka nilai tersebut kemudian akan dikalikan dengan nilai $P(C_i)$.

```
1. P (X | Status = "Ok") x P (Status = "Ok") = 0,03915 x (83/105) = 0,03095

2. P (X | Status = "Gagal") x P (Status = "Gagal") = 0,01049 x (22/105) = 0,00219
```

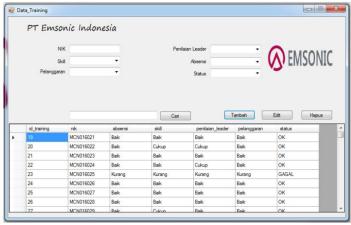
Berdasarkan hasil diatas, maka X (MCN016021) memiliki kelas yang berstatus "Ok" karena nilai dari status ok lebih besar bila dibandingkan dengan nilai status gagal yaitu 0,03095

Implementasi

Pada bagian ini akan menampilkan GUI dari sistem yang dibuat, tujuannya sebagai perbandingan pada proses pengujian secara *blackbox* yang akan dilakukan. GUI untuk sistem yang dibuat terdapat pada Gambar 3. Pada form login pengguna diminta untuk memasukkan *uername* dan *password* untuk masuk kedalam sistem.

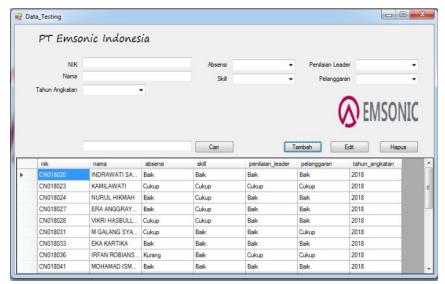
Gambar 3. Form login sistem

Setelah berhasil login, maka sistem akan menampilkan menu utama aplikasi yang memiliki menu data pengguna, data *training*, data *testing* dan analisa hasil. Gambar 4 merupakan GUI untuk menu data *training*. Menu data *training* digunakan untuk melakukan perhitungan naïve bayes sesuai data yang ada.



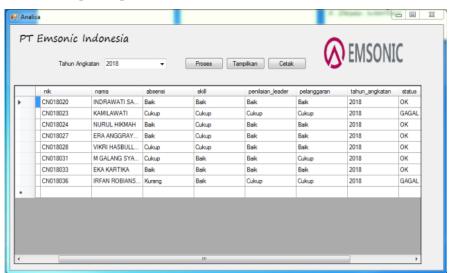
Gambar 4. Menu data training

Sedangkan gambar 5 merupakan GUI untuk data *testing*, dimana data *testing* digunakan untuk mengelola data yang akan diuji untuk mengetahui hasil dari status dari data *testing* tersebut, pengujian yang dilakukan melalui form analisa.



Gambar 5. Menu data testing

Sedangkan gambar 6 merupakan GUI untuk hasil analisa algoritma naïve bayes. Data yang diinput pada form data testing akan diuji menggunakan data yang ada pada data *training*. Hasil uji tersebut ditampilkan pada form analisa.



Gambar 6. Menu analisa

Pengujian

Pengujian dilakukan melalui beberapa skenario untuk mengetahui apakah hasil dari sistem telah sesuai dengan perancangan yang telah dibuat sebelumnya. Adapun hasil pengujian yang dilakukan terangkum pada Tabel 5.

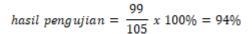
Table 5. Skenario pengujian sistem

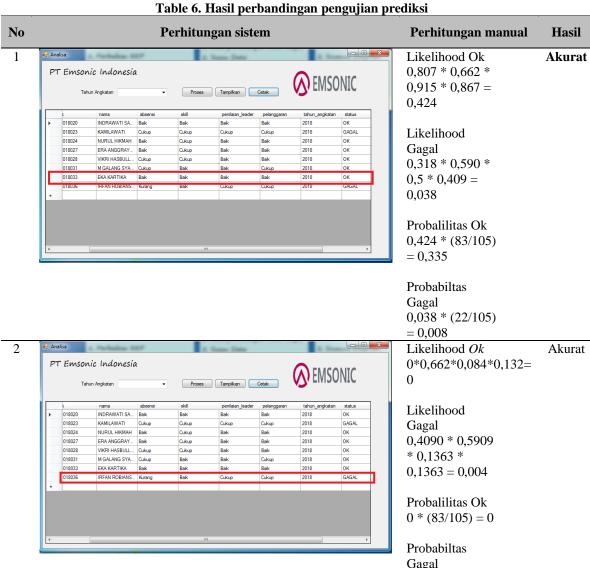
	Tuble of Brenario pengajian biseem							
No	Data masukkan	Hasil diharapkan	Pengamatan	Kesimpulan				
1	Username dan password benar	Masuk ke menu utama	Login berhasil dan sistem masuk ke menu utama	Valid				
2	Username dan password salah ataupun kosong	Menampilkan peringatan kesalahan dan tetap pada form login	Login gagal	Valid				

3	Mengisi seluruh textbox kemudian mengklik "tambah"	Data training bertambah	Muncul informasi, data berhasil ditambah	Valid
4	Mengisi sebagian textbox kemudian mengklik "tambah"	bertambah	semua form, data gagal bertambah	Valid
5	Mengklik salah satu isi gridview kemudian mengubah isi textbox, dan mengklik "edit"	Data training berhasil di ubah	Muncul peringatan jika memilih "yes" maka data berubah	Valid
6	Mengisi <i>textbox</i> cari sesuai dengan nik, kemudian mengklik "cari"	Mengisi textbox cari sesuai dengan nik, kemudian mengklik "cari"	Mengisi <i>textbox</i> cari sesuai dengan nik, kemudian mengklik "cari"	Valid
7	Memilih salah satu isi dari gridview kemudian mengklik "hapus"	Memilih salah satu isi dari gridview kemudian mengklik "hapus"	Memilih salah satu isi dari gridview kemudian mengklik "hapus"	Valid
8	Mengisi seluruh textbox kemudian mengklik "tambah"	Data testing bertambah	Muncul informasi, data berhasil di tambah	Valid
9	Mengisi sebagian textbox kemudian mengklik "tambah"	Data testing tidak bertambah	Muncul informasi isi semua form, data gagal bertambah	Valid
10	Muncul informasi isi semua form, data gagal bertambah	Data testing berhasil di ubah	Muncul peringatan jika memilih "yes" maka data testing berubah	Valid
11	Mengisi <i>textbox</i> cari sesuai dengan nik, kemudian mengklik "cari"	Menampilkan data sesuai dengan isi dari <i>textbox</i> cari	Menampilkan data sesuai dengan isi dari <i>textbox</i> cari	Valid
12	Memilih salah satu isi dari gridview kemudian mengklik "hapus"	Data yang dipilih dari gridview terhapus	Menampilkan tombol peringatan jika di klik "yes" maka data testing terhapus	Valid
13	Memilih tahun angkatan, kemudian mengklik "proses"	Memilih tahun angkatan, kemudian mengklik "proses"	Data testing muncul disertai dengan hasil pengujian dengan tahun angkatan yang di pilih	Valid

Setelah dilakukan pengujian secara *blackbox*, maka selanjutnya penulis akan melakukan analisa perbandingan dengan perhitungan manual. Table 6 merupakan hasil perbandingan pengujian yang dilakukan. Untuk prosentase perbandingan hasil pengujian yang dilakukan dapat dihitung dengan cara:

$$hasil\ pengujian = \frac{hasil\ benar}{jumlah\ data}\ x\ 100\%$$





Berdasarkan poin 1 diketahui bahwa perhitungan naïve bayes maka dapat disimpulkan bahwa hasil input status karyawan adalah Ok karena nilai probabilitas tertinggi adalah Ok yaitu 0,335. Sedangkan untuk poin 2, hasil input status karyawan adalah Gagal karena nilai probabilitas tertinggi adalah Gagal dengan nilai 0,001.

Apabila peneliti analisis, maka ddapat diketahui bahwa:

- 1. Sistem dapat menghasilkan prediksi sesuai dengan yang diharapkan
- Sistem dapat memproses sekaligus memprediksi berdasarkan tahun angkatan, sehingga tidak memerlukan proses satu persatu
- 3. Hasil prediksi dapat digunakan sebagai alat pengambil keputusan

Sedangkan kekurangan dari sistem ini yaitu hasil prediksi tidak dapat dihapus sehingga sebelum melakukan proses perlu memastikan data testing sudah benar.

0,004 * (22/105)

= 0.001

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan oleh peneliti dapat disimpulkan bahwa algoritma navie bayes dapat digunakan untuk memprediksi status karyawan berdasarkan penilaian dan data sebelumnya sehingga dapat menjadi referensi dalam menentukan status karyawan. Sedangkan akurasi yang dihasilkan sebesar 94% dengan kesalahan hanya 6 data.

DAFTAR PUSTAKA

- [1] E. Afrianti, F. Fathoni, and R. I. Heroza, "Klasifikasi Teks dengan Naïve Bayes Classifier (NBC) untuk Pengelompokan Keterangan Laporan dan Durasi Recovery Time Laporan Gangguan Listrik PT.PLN (Persero) WS2JB Area Palembang," *JSI J. Sist. Inf.*, vol. 12, no. 1, pp. 1955–1961, 2020.
- [2] F. Handayani and F. S. Pribadi, "Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110," *J. Tek. Elektro*, vol. 7, no. 1, pp. 19–24, 2015, doi: 10.15294/jte.v7i1.8585.
- [3] S. Adi, "Implementasi Algoritma Naive Bayes Classifier untuk Klasifikasi Penerima Beasiswa PPA di Universitas AMIKOM Yogyakarta," *J. Mantik Penusa*, vol. 22, no. 1, pp. 11–16, 2018.
- [4] V. M. M. Siregar, "Sistem Pendukung Keputusan Penentuan Insentif Bulanan Pegawai dengan Menggunakan Metode Naive Bayes," *SISTEMASI*, vol. 7, no. 2, pp. 87–94, 2018, doi: https://doi.org/10.32520/stmsi.v7i2.287.
- [5] G. Gustientiedina, M. Siddik, and Y. Desnelita, "Penerapan Naïve Bayes untuk Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis," *J. Infomedia*, vol. 2, no. 4, pp. 2–6, 2019, doi: http://dx.doi.org/10.30811/jim.v4i2.1892.
- [6] I. Anggraini, Y. N. Kunang, and F. Firdaus, "Penerapan Naive Bayes pada Pendeteksian Malware dengan Diskritisasi Variabel," *Telematika*, vol. 13, no. 1, pp. 11–21, 2020, doi: http://dx.doi.org/10.35671/telematika.v13i1.886.
- [7] R. Y. Hayuningtyas, "Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita," *J. Inform.*, vol. 6, no. 1, pp. 18–22, 2019, doi: 10.31311/ji.v6i1.4685.
- [8] Y. Yuliyana and A. S. R. M. Sinaga, "Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Naive Bayes," *Fountain Informatics J.*, vol. 4, no. 1, p. 19, 2019, doi: 10.21111/fij.v4i1.3019.
- [9] A. Saleh, "Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga," *Creat. Inf. Technol. J.*, vol. 2, no. 3, pp. 207–217, 2015, doi: https://doi.org/10.24076/citec.2015v2i3.49.
- [10] S. Riyadi, "Penerapan Metode Naive Bayes dalam Pengklasifikasian Trafik Jaringan," *smatika*, vol. 53, no. 9, pp. 1689–1699, 2013, doi: https://doi.org/10.32664/smatika.v6i02.45.