FUZZY INFERENCE SYSTEM DIAGNOSA PENYAKIT PADA IBU HAMIL

Fuzzy Inference Sistem For Disease Diagnosis In Pregnant Woman

Oky Abriyanto¹, Wiwien Hadikurniawati²

^{1,2} Program Studi Teknik Informatika, Fakulta Teknologi Informasi, Universitas Stikubank Semarang, Indonesia

e-mail: *\frac{1}{2}oky95dkk@gmail.com, \frac{2}{2}wiwien@edu.unisbank.ac.id

Abstrak

Di Indonesia kematian ibu umumnya disebabkan oleh obstetric langsung, diantanya 28% akibat perdarahan, 24% eclampsia dan sebanyak 11% akibat infeksi. Penyebab obstetric tidak langsung adalah trauma obstetric 5% dan 11% lainnya . Dari penyebab kematian ibu tersebut menunjukan bahwa eklamsia menempati urutan kedua penyebab kematian ibu pada masa kehamilan. Minimnya informasi pada ibu hamil mengenai gejala-gejala penyakit yang muncul pada masa kehamilan dan bahaya dari kehamilan resiko tinggi menyebabkan angka kematian ibu ynag tinggi pula. Penelitian ini bertujuan membuat sistem pakar yang dapat digunakan untuk mendiagnosa status resiko penyakit ibu hamil dengan menggunakan fuzzy inference system. Status resiko yag ditetapkan untuk ibu hamil yaitu preeklamsia ringan, hamil normal atau preeklamsia berat. Kriteria diagnosa menggunakan kriteria Tekanan Darah Sistolik (TDS), Tekanan Darah Diastolik (TDD), Kenaikan Berat Badan (KBB), Usia Ibu (UI). Mesin inferensi menghasilkan 81 aturan dan proses diagnosa pada ibu hamil menggunakan fuzzy dengan fungsi MIN. **Kata kunci** Fuzzy Inference System, Ibu Hamil, Penyakit

Abstract

The common causes of maternal death in Indonesia are direct obstetrics, including bleeding as much as 28%, eclampsia as much as 24%, and infection as much as 11%, while indirect obstetric causes are obstetric trauma 5% and others 11%. Based on the percentage of causes of maternal death, it shows that eclampsia is the second leading cause of maternal death during pregnancy. The high maternal mortality rate is due to the lack of information to pregnant women about the symptoms of diseases that appear during pregnancy and the dangers of high-risk pregnancies. This study aims to research to create an expert system that can be used to diagnose the disease risk status of pregnant women by using the fuzzy method with the risk status of pregnant women, namely mild preeclampsia, normal pregnancy or severe preeclampsia. The diagnostic criteria used the criteria for Systolic Blood Pressure (TDS), Diastolic Blood Pressure (TDD), Weight Gain (KBB), Maternal Age (UI). The inference engine generates 81 rules and diagnostic processes for pregnant women using fuzzy with the MIN function.

Keywords— Fuzzy Inference System, Pregnant Mother, Desease

PENDAHULUAN

Sejalan dengan pesatnya perkembangan teknologi mengakibatkan kemajuan teknologi dan informasi yang memegang peranan penting dalam berbagai bidang kehidupan termasuk dalam bidang kesehatan ibu hamil. Kehamilan merupakan fenomena fisiologis, diawali dengan pembuahan dan berakhir pada proses persalinan. [1][2].

Penyakit kehamilan adalah suatu gangguan yang terjadi pada saat kehamilan [3]. Kondisi kehamilan yang normal tidak menjamin ibu hamil dalam kondisi yang baik. Informasi dan sosialisasi yang minim tentang penyakit selama kehamilan menyebabkan ibu baru menyadari adanya penyakit yang menyertai kehamilannya setelah stadium lanjut. Penyakit yang terjadi pada seorang ibu hamil merupakan penyakit yang perlu mendapat perhatian. Hal ini dikarenakan berhubungan dengan kesehatan dan kehidupan ibu dan bayi yang dikandungnya. [4].

Di Indonesia secara umum penyebab kematian ibu adalah *obstetric* langsung, yaitu perdarahan 28%, *eclampsia* 24% dan infeksi 11%, Selain itu ada pula penyebab *obstetric* tidak

Informasi Artikel:

Submitted: Juni 2022, Accepted: Juni 2022, Published: Mei 2022

ISSN: 2685-4902 (media online), Website: http://jurnal.umus.ac.id/index.php/intech

42 ISSN: 2685-4902 (online)

langsung yaitu trauma *obstetric* 5% dan lain-lain 11% [5]. Penyebab kematian ibu di atas menunjukan bahwa eklamsia menempati urutan kedua penyebab kematian ibu hamil. Ibu hamil terkadang mengalami bermacam gangguan. Gangguan tersebut dapat berupa gangguan ringan sampai berat. Kehamilan terdiri dari 3 triwulan, triwulan satu yaitu dari 1-12 minggu, triwulan 2 dari 12-28 minggu dan triwulan tiga dari 28-40 minggu. Gangguan pada kehamilan yang tidak tertangani bisa mengakibatkan kematian pada ibu dan anak dalam kandungan.

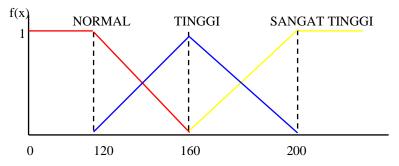
Untuk menangani permasalahan diatas, maka perlu dibuat sistem yang dapat membantu mendeteksi penyakit pada masa kehamilan berdasarkan gejala-gejala yang ada. Sistem yang dibangun adalah sistem yang mengadopsi keahlian seorang pakar dalam memecahkan suatu permasalahan. Sistem pakar merupakan sistem dapat meniru pengetahuan manusia sehingga komputer dapat menyelesaikan masalah seperti yang biasa dilakukan para ahli [6]. Penelitian ini bertujuan untuk membangun sistem pakar yang dapat digunakan untuk mendiagnosa status resiko penyakit ibu hamil dengan menggunakan *fuzzy inference system*. *Output* yang dihasilkan adalah status resiko ibu hamil yaitu preeklamsia ringan, hamil normal atau preeklamsia berat.

Penelitian oleh Fiano & Purnomo telah berhasil menggunakan *fuzzy* dalam mendeteksi tingkat resiko penyakit jantung dengan tingkat akurasi sebesar 80% [7]. Penelitian oleh Fahmi menggunakan *fuzzy* dalam mendiagnosa gizi buruk pada balita dengan hasil hasil uji coba dengan akurasi mencapai 90% kebenaran [8]. Penelitian serupa oleh Hendrawan dkk menggunakan metode *fuzzy* dalam melakukan diagnosa penyakit pada tanaman karet dengan hasil akurasi sebesar 81,74%, nilai 5-*cross validation* sebesar 80,93% dan nilai 10-*cross validation* sebesar 82,30% [9]. Penelitian serupa juga dilakukan oleh Basri telah berhasil menggunakan logika *fuzzy Mamdani* untuk diagnosa spesifikasi serangan hama pada tanaman kakao [10].

METODE PENELITIAN

Penelitian ini merancang suatu system pakar yang dapat menentukan status resiko yang dialami oleh ibu hamil. Status resiko tersebut adalah preeklamsia ringan, hamil normal atau preeklamsia berat. Selain itu penelitian ini memanfaatkan teknologi berbasis web yang bertujuan mengadopsi kemampuan yang mirip dengan manusia dalam bernalar atau berpikir. Sistem ini membantu dan memudahkan penyelesaian dari suatu masalah ataupun kasus, karena dapat menggantikan peran manusia/ahli yang basis pengetahuannya diimplementasikan melalui program yang ditanamkan pada komputer. Arsitektur sistem pakar diagnosa penyakit ibu hamil dengan *fuzzy inference system* diperlihatkan seperti pada Gambar 1.

Gambar 1. Arsitektur Sistem

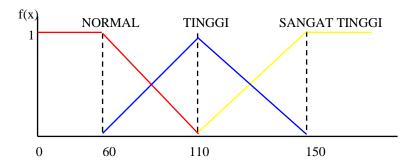

Arsitektur sistem pada Gambar 1 menjelaskan proses konsultasi dimulai dari pengguna megisi data diagnosa yang terdiri dari tekanan darah sistolik, tekanan darah diastolik, kenaikan berat badan, usia kehamilan, usia ibu dan edema yang dialami oleh ibu hamil. Sistem akan mencari data aturan pada database sistem pakar dari *fuzzy*. Setelah proses diagnosa dihasilkan akan didapatkan hasil diagnosa yaitu status resiko dan solusi dari penyakit ibu hamil yang ditemukan.

Fuzzyfikasi

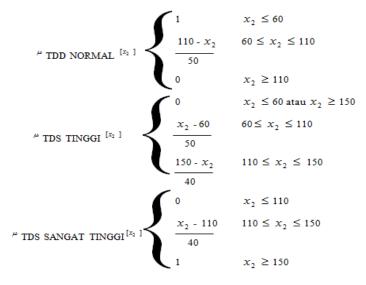
Proses *fuzzyfikasi* dari system pakar untuk mendiagnosa penyakit ibu hamil menggunakan *fuzzy inference system* adalah:


a. Tekanan Darah Sistolik (TDS)

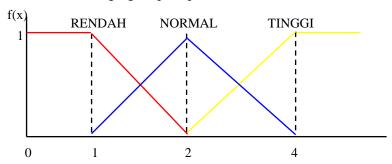
Tekanan darah sistolik adalah tekanan saat jantung berkontraksi untuk mempompa darah ke seluruh tubuh yang diukur dengan satuan mmHg. Kriteria TDS terdiri dari 3 bagian himpunan fuzzy, yaitu: NORMAL, TINGGI dan SANGAT TINGGI. Himpunan NORMAL dan SANGAT TINGGI menggunakan pendekatan fungsi keanggotaan (membership function) yang berbentuk kurva bahu, sedangkan himpunan TINGGI menggunakan pendekatan berbentuk kurva segitiga seperti pada Gambar 2.


Gambar 2. Membership Function pada Kriteria TDS

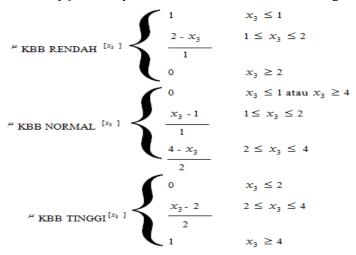
Membership function pada kriteria TDS dirumuskan sebagai berikut :


b. Tekanan Darah Diastolik (TDD)

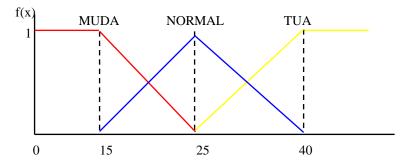
Tekanan darah diastolik adalah tekanan darah pada dinding pembuluh saat jantung dalam kondisi istirahat yang diukur dengan satuan mmHg. Kriteria TDD diuraikan ke dalam 3 himpunan fuzzy, yaitu: NORMAL, TINGGI dan SANGAT TINGGI. Himpunan NORMAL dan SANGAT TINGGI menggunakan pendekatan membership function yang berbentuk kurva bahu, sedangkan himpunan TINGGI menggunakan pendekatan berbentuk kurva segitiga seperti pada Gambar 3.


Gambar 3. Membership Function pada Kriteria TDD

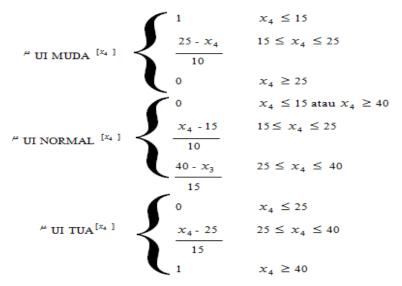
Membership function pada kriteria TDD dirumuskan sebagai berikut :


c. Kenaikan Berat Badan (KBB)

Kenaikan berat badan pada tiap ibu hamil berbeda-beda dan itu merupakan hal yang wajar dialami oleh ibu hamil. Kriteria KBB dibagi menjadi 3 himpunan *fuzzy*, yaitu : RENDAH, NORMAL dan TINGGI. Himpunan RENDAH dan TINGGI menggunakan pendekatan *membership function* yang berbentuk kurva bahu, sedangkan himpunan NORMAL menggunakan pendekatan berbentuk kurva segitiga seperti pada Gambar 4.

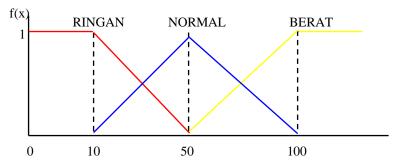

Gambar 4. Membership function pada Kriteria KBB

Membership function pada kriteria KBB dirumuskan sebagai berikut :


d. Usia Ibu (UI)

Kriteria UI terdiri dari 3 himpunan *fuzzy*, yaitu : MUDA, NORMAL dan TUA. Himpunan MUDA dan TUA menggunakan pendekatan *membership function* yang berbentuk bahu, sedangkan himpunan NORMAL menggunakan pendekatan berbentuk kurva segitiga seperti pada Gambar 5.

Gambar 5. Membership Function pada Kriteria UI


Membership function pada kriteria UI dirumuskan sebagai berikut:

ISSN: 2685-4902 (online)

e. Status Resiko (SR)

Resiko Kehamilan adalah suatu kondisi kehamilan yang bisa mengancam kesehatan dan keselamatan ibu dan janin. Kondisi ini bisa disebabkan karena komplikasiatau penyakit saat kehamilan Kriteria SR diurai menjadi 3 himpunan *fuzzy*, yaitu: RINGAN [0 50], NORMAL [10 100] dan BERAT [100 ∞]. Himpunan RINGAN dan BERAT menggunakan pendekatan *membership function* yang berbentuk bahu, sedangkan himpunan NORMAL menggunakan pendekatan berbentuk segitiga seperti pada Gambar 6.

Gambar 6. Membership Function pada Kriteria SR

Membership function pada kriteria tingkat kerawanan dirumuskan sebagai berikut :

Defuzzyfikasi

Defuzzyfikasi merupakan perhitungan nilai *crisp output*. Untuk mengkonversi nilai fuzzy menjadi nilai crisp menggunakan rata-rata terbobot.

HASIL DAN PEMBAHASAN

Proses konsultasi penyakit ibu hamil pada sistem pakar diagnosa penyakit ibu hamil dengan *fuzzy inference system* berbasis web dengan mengisi nama, tekanan darah sistolik, tekanan darah diastolik, kenaikan berat badan dan usia ibu hamil yang diperlihatkan seperti Gambar 7. Proses perhitungan metode *fuzzy* pada sistem pakar diagnosa penyakit ibu hamil yaitu:

1. Kondisi ibu hamil yaitu

a. Tekanan Darah Sistolik (TDS)
b. Tekanan Darah Diastolik (TDD)
c. Kenaikan Berat Badan (KBB)
d. Usia Ibu (UI)
100 mmHg
80 mmHg
1 Kg
35 Tahun

Gambar 7. Antar Muka Konsultasi Penyakit Ibu Hamil

2. Proses Fuzzyfikasi

- a. Tekanan Darah Sistolik (TDS)
 - TDS adalah 100 pada kriteria TDS normal termasuk dalam nilai x₁ ≤ 120 sehingga nilai fuzzy TDS normal adalah 1.
 - 2) TDS adalah 100 pada kriteria TDS tinggi termasuk dalam nilai ¼ ≤ 120 atau ¼ ≥ 200 sehingga nilai *fuzzy* TDS tinggi adalah 0.
 - 3) TDS adalah 100 pada kriteria TDS sangat tinggi termasuk dalam nilai X ≤ 160 sehingga nilai fuzzy TDS sangat tinggi adalah 0.
- b. Tekanan Darah Diastolik (TDD)
 - 1) TDD adalah 80 pada kriteria TDD normal termasuk dalam nilai $60 \le X_2 \le 110$ sehingga nilai *fuzzy* TDD normal adalah 110-8050 = 0,6.
 - 2) TDD adalah 80 pada kriteria TDD tinggi termasuk dalam nilai $60 \le x_2 \le 110$ sehingga nilai *fuzzy* TDD tinggi adalah 80-6050 = 0,4.
 - 3) TDD adalah 80 pada kriteria TDD sangat tinggi termasuk dalam nilai $x_2 \le 110$ sehingga nilai fuzzy TDD sangat tinggi adalah 0.
- c. Kenaikan Berat Badan (KBB)
 - KBB adalah 1 pada kriteria KBB rendah termasuk dalam nilai X₃ ≤ 1 sehingga nilai fuzzy KBB rendah adalah 1.
 - 2) KBB adalah 1 pada kriteria KBB normal termasuk dalam nilai $x_3 \le 1$ atau $x_3 \ge 4$ sehingga nilai fuzzy KBB normal adalah 0.
 - KBB adalah 1 pada kriteria KBB tinggi termasuk dalam nilai x₃ ≤ 2 sehingga nilai fuzzy KBB tinggi adalah 0.
- d. Usia Ibu (UI)
 - 1) UI adalah 35 pada kriteria UI muda termasuk dalam nilai $X_4 \ge 25$ sehingga nilai fuzzy UI muda adala 0.
 - 2) UI adalah 35 pada kriteria UI normal termasuk dalam nilai $25 \le x_4 \le 40$ sehingga nilai fuzzy UI normal adalah 40-3515 = 0.33.
 - 3) UI adalah 35 pada kriteria UI tua termasuk dalam nilai $25 \le X_4 \le 40$ sehingga nilai fuzzy UI tua adalah 35-2515 = 0.67.

3. Mesin Inferensi

Mesin inferensi pada penelitian ini menggunakan fungsi MIN dan aturan yang dihitung yaitu R1 sampai dengan R5, perhitungan data yang lain menyesuaikan. Hasil perhitungan mesin inferensi dengan fungsi MIN yaitu

[R1] IF TDS Normal AND TDD Normal AND KBB Rendah AND UI Muda THEN RESIKO Preeklamsia Ringan

 α -predikat1 = μ Normal \cap Normal \cap Rendah \cap Muda

 $= \min(1;0,6;1;0)$

= 0

Himpunan Preeklamsia Ringan pada grafik keanggotaan variabel resiko yaitu (50 - x_5) /

$$40 = 0 \rightarrow x_5 = 50$$

[R2] IF TDS Normal AND TDD Normal AND KBB Rendah AND UI Normal THEN RESIKO Hamil Normal

 α -predikat2 = μ Normal \cap Normal \cap Rendah \cap Normal

 $= \min(1;0,6;1;0,33)$

= 0.33

Himpunan Hamil Normal pada grafik keanggotaan variabel resiko yaitu (x_5 - 10) / 40 = 0,33 $\Rightarrow x_5$ = 23,32

[R3] IF TDS Normal AND TDD Normal AND KBB Rendah AND UI Tua THEN RESIKO Preeklamsia Ringan

 α -predikat3 = μ Normal \cap Normal \cap Rendah \cap Tua

 $= \min(1;0,6;1;0,67)$

= 0.6

Himpunan Preeklamsia Ringan pada grafik keanggotaan variabel resiko yaitu (50 - X₅) /

$$40 = 0.6 \implies x_5 = 26$$

[R4] IF TDS Normal AND TDD Normal AND KBB Normal AND UI Muda THEN RESIKO Preeklamsia Ringan

 α -predikat4 = μ Normal \cap Normal \cap Normal \cap Muda

 $= \min(1;0,6;0;0)$

= 0

Himpunan Preeklamsia Ringan pada grafik keanggotaan variabel resiko yaitu (50 - X₅) /

$$40 = 0 \rightarrow X_5 = 50$$

[R5] IF TDS Normal AND TDD Normal AND KBB Normal AND UI Normal THEN RESIKO Preeklamsia Berat

 α -predikat5 = μ Normal \cap Normal \cap Normal

 $= \min(1;0,6;0;0,33)$

= 0

Himpunan Preeklamsia Berat pada grafik keanggotaan variabel resiko yaitu (X₅ - 50) / 50

$$=0 \rightarrow X_5 = 50$$

Hasil perhitungan mesin inferensi menggunakan fungsi MIN diperlihatkan seperti Tabel 1.

Tabel 1. Hasil Mesin Inferensi

Tuber 1. Hugh Media interensi													
Rule	α-predikat	Nilai	Rule	α-predikat	Nilai	Rule	α-predikat	Nilai					
R1	0,00	50,00	R28	0,00	10,00	R55	0,00	50,00					
R2	0,33	23,32	R29	0,00	50,00	R56	0,00	10,00					
R3	0,60	26,00	R30	0,00	10,00	R57	0,00	50,00					
R4	0,00	50,00	R31	0,00	50,00	R58	0,00	50,00					
R5	0,00	50,00	R32	0,00	50,00	R59	0,00	50,00					

R6	0,00	50,00	R33	0,00	50,00	R60	0,00	50,00
R7	0,00	50,00	R34	0,00	50,00	R61	0,00	50,00
R8	0,00	50,00	R35	0,00	50,00	R62	0,00	50,00
R9	0,00	50,00	R36	0,00	50,00	R63	0,00	50,00
R10	0,00	50,00	R37	0,00	50,00	R64	0,00	10,00
R11	0,33	36,68	R38	0,00	10,00	R65	0,00	50,00
R12	0,40	26,00	R39	0,00	50,00	R66	0,00	10,00
R13	0,00	50,00	R40	0,00	50,00	R67	0,00	50,00
R14	0,00	50,00	R41	0,00	50,00	R68	0,00	50,00
R15	0,00	50,00	R42	0,00	50,00	R69	0,00	50,00
R16	0,00	50,00	R43	0,00	50,00	R70	0,00	50,00
R17	0,00	50,00	R44	0,00	50,00	R71	0,00	50,00
R18	0,00	50,00	R45	0,00	50,00	R72	0,00	50,00
R19	0,00	50,00	R46	0,00	10,00	R73	0,00	50,00
R20	0,00	10,00	R47	0,00	50,00	R74	0,00	10,00
R21	0,00	50,00	R48	0,00	10,00	R75	0,00	50,00
R22	0,00	50,00	R49	0,00	50,00	R76	0,00	50,00
R23	0,00	50,00	R50	0,00	50,00	R77	0,00	50,00
R24	0,00	50,00	R51	0,00	50,00	R78	0,00	50,00
R25	0,00	50,00	R52	0,00	50,00	R79	0,00	50,00
R26	0,00	50,00	R53	0,00	50,00	R80	0,00	50,00
R27	0,00	50,00	R54	0,00	50,00	R81	0,00	50,00

4. Defuzzyfikasi

Hasil *defuzzyfikasi* dalam sistem pakar diagnosa penyakit ibu hamil dibedakan menjadi tiga tingkat yaitu

- a. Preeklamsia Ringan jika nilai <=50
- b. Hamil Normal jika nilai antara 51 sampai dengan 75
- c. Preeklamsia Berat jika nilai > 75

Proses defuzzyfikasi dihitung dengan menggunakan rumus persamaan:

$$Z = \sum \frac{\mu(y)y}{\mu(y)}$$

Z = 0*50 + 0.33*23.32 + 0.6*26 + 0*50...0 + 0.33 + 0.6 + 0...

Z = 45,981,67

Z= 27,53 dengan hasil Preeklamsia Ringan.

Hasil konsultasi penyakit ibu hamil pada sistem pakar diagnosa penyakit ibu hamil dengan metode *fuzzy* akan menampilkan nama, tekanan darah sistolik, tekanan darah diastolik, kenaikan berat badan, usia ibu hamil status resiko penyakit ibu hamil dan solusi dari penyakit yang ditemukan yang diperlihatkan seperti Gambar 8.

Gambar 8. Antar Muka Untuk Hasil Konsultasi

KESIMPULAN

Sistem pakar untuk mendiagnosa status resiko penyakit ibu hamil dengan metode *fuzzy* menggunakan kriteria Tekanan Darah Sistolik (TDS), Tekanan Darah Diastolik (TDD), Kenaikan Berat Badan (KBB), Usia Ibu (UI). Mesin inferensi menghasilkan 81 aturan dan proses diagnosa pada ibu hamil menggunakan *fuzzy* dengan fungsi MIN. Hasil konsultasi dengan perhitungan metode *fuzzy* dari kondisi ibu hamil yaitu TDS = 100, TDD = 80, KBB = 1, UI = 35 didapatkan nilai *defuzzyfikasi* yaitu 27,53 dengan hasil penyakit ibu hamil yaitu Preeklamsia Ringan

DAFTAR PUSTAKA

- [1] N. Nugrawati and Amriani, Buku Ajar Kebidanan Pada Kehamilan, Indramayu: CV. Adanu Abimata, 2021.
- [2] A. Abdillah, Nurajijah and I. Nawawi, "Perancangan Sistem Pakar Diagnosa Penyakit Kehamilan Berbasis We," *Jurnal TECHNO Nusa Mandiri*, vol. XV, no. 2, 2018.
- [3] M. R. Handoko and Neneng, "Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode Naive Bayes Berbasis Web," *Jurnal Teknologi dan Sistem Informasi*, vol. II, no. 1, pp. 50-58, 2021.
- [4] S. Asturi, A. I. Susanti, R. Nurparidah, E. K. Dewi and R. Astikawati, Asuhan Ibu Dalam Masa Kehamilan, Jakarta: Erlangga, 2017.
- [5] Z. Prihatini, "https://www.kompas.com," Kompas, 15 Pebruary 2022. [Online]. Available: https://www.kompas.com. [Accessed 15 January 2022].
- [6] S. Kusumadewi, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Yogyakarta: Graha Ilmu, 2015.
- [7] D. S. I. Fiano and A. S. Purnomo, "Sistem Pakar Untuk Mendeteksi ingkat Resiko Penyakit Jantung Dengan Fuzzy Inferensi (Mamdani)," *Informatics Journal*, vol. II, no. 2, pp. 64-78, 2017.
- [8] H. Fahmi, "Penerapan Sistem Pakar Untuk Diagnosa Gizi Buruk Pada Balita Menggunakan Metode Fuzzy Mamdani," *Jurnal Mantik Penusa*, vol. I, no. 2, pp. 144-148, 2017.
- [9] Hendrawan, E. Rasywir, A. Haris and Y. Pratama, "Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani Berbasis Web," *Jurnal Media Informatika Budidarma*, vol. IV, no. 4, pp. 1225-1234, 2020.

[10] Basri, "Logika Fuzzy Mamdani Pada Sistem Pakar Identifikasi Hama Tanaman Kakao," *Konferensi Nasional Ilmu Komputer*, pp. 501-507, 2021.